
1.  Introduction
Convection in astrophysical objects such as planets and stars occurs in spherically symmetric rotating fluid layers. 
Convection occurring under the influence of rotation determines heat transport and dynamics in these layers and 
can drive jets, large-scale vortices, and dynamo action when the fluid is an electrical conductor. The specifics of the 
magnetohydrodynamics in such a system are often determined by how far away the parameters of convection are 
from those required for the onset of thermal convection (Aubert et al., 2017; Busse & Or, 1986; Calkins et al., 2016; 
Christensen & Aubert, 2006; Gastine et al., 2016; Gillet & Jones, 2006; Julien, Knobloch, et al., 2012; Julien, Rubio, 
et al., 2012). These convective fluid layers can span a range of geometries, from thin spherical shells such as atmospheres 
and interiors of planets and moons (Amit et al., 2020; Aurnou et al., 2007, 2008; Heimpel & Aurnou, 2007; Heimpel 
et al., 2022; Kaspi et al., 2020; Soderlund, 2019; Soderlund & Stanley, 2020), magma oceans (Labrosse et al., 2007; 
Stixrude et al., 2020), and the solar convection zone (Christensen-Dalsgaard et al., 1991) to thick, such as the outer core 
of the Earth (Olson, 2015). Thus, modeling fluid dynamics and dynamo processes in these objects requires knowledge 
of the critical parameters of onset of rotating convection across a range of spherical shell geometries.

The classical setup for this problem is a fluid contained within a spherical shell having boundaries with inner and 
outer radii ri and ro, respectively, and thickness L = ro − ri. The shell rotates at a rate Ω, as shown in Figure 1. 
The fluid is either heated volumetrically using uniformly distributed heat sources or differentially by fixing the 
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temperatures at both boundaries (Dormy et al., 2004). We focus on the latter 
scenario in our present study. The temperatures at the inner and outer spherical 
boundaries are held fixed at Ti and To, respectively, and we denote ΔT = Ti − To. 
The parameters governing the dynamics of the system are the Rayleigh number, 
Ra = αgoΔTL 3/νκ, which quantifies the strength of thermal driving; the Ekman 
number, E = ν/ΩL 2 which is the ratio of the viscous drag to the Coriolis force; 
the Prandtl number, Pr = ν/κ which is the ratio of viscosity to thermal diffu-
sivity; and the spherical shell radius ratio χ = ri/ro. Here, α is the coefficient of 
thermal expansion and go is the acceleration due to gravity at the outer bound-
ary. ν and κ describe the viscosity and thermal diffusivity of the fluid, respec-
tively. The most common variation of gravity g(r) that is used is linear, g(r) ∝ r, 
emulating a terrestrial planet, though some studies have also used g(r) ∝ 1/r 2, 
emulating the gravity environment of a star or gas giant (Gastine et al., 2016).

Convection in rotating spheres and spherical shells is a classical fluid dynam-
ics problem (Jeffreys & Bland,  1951; Oberbeck,  1879; Pekeris,  1935). Early 
comprehensive work on the topic was by Chandrasekhar (1961) who focused on 
only axisymmetric modes, but considered both a fluid sphere as well as several 
different shell radius ratios and a few different gravity profiles. Roberts (1968) 
showed that for E → 0 the first unstable convective mode is nonaxisymmetric in 
an internally heated sphere and that the unstable modes have a width of 𝐴𝐴 

(

𝐸𝐸
1∕3

)

 
while the critical Rayleigh number required for the onset of convection scales 
as Rac ∼ E −4/3, the same scalings as those obtained by Chandrasekhar (1961) 

for convection in a rotating plane layer. Busse (1970) considered a reduced annulus model, considering equatorially 
symmetric solutions and provided a scaling for the drift frequency of the columnar thermal Rossby wave modes 
ωc ∼ E −1/3, when time is scaled by the rotation rate of the annulus. This last scaling corresponds to ωc ∼ E 2/3 when time is 
scaled by the viscous diffusion time (Dormy et al., 2004). At the onset of convection, these modes are quasi-geostrophic 
with their motions being close to independent along the rotation axis (Busse, 1970, 1975, 1986, 1994, 2002). They 
are essentially the thermal counterpart to Rossby modes in a spherical container and have a prograde drift (Busse & 
Or, 1986). The numerical study of Zhang (1992) showed that the local analyses by Roberts and Busse could not explain 
the numerical results. Following Soward (1977) and Yano (1992), Jones et al. (2000) performed a global stability anal-
ysis and obtained solutions that agreed with numerical results of Zhang (1992). It is worth noting that Busse's reduced 
annulus model, despite its geometrical differences, has been instrumental in obtaining a fundamental understanding of 
the onset of convection in rotating spherical shells (Calkins et al., 2013; Pino et al., 2000, 2001).

Beyond Chandrasekhar (1961), the study of onset of convection in spherical shells advanced with linear simu-
lations of Gilman (1975) who focused on a differentially heated spherical shell filled with a fluid with Prandtl 
number of unity and a shell radius ratio χ = ri/ro = 0.2, and confirmed that the variation of Rac, mc, and ωc tend 
toward the scaling laws predicted by Roberts (1968) and Busse (1970) for a fluid sphere as the Ekman number 
E is lowered. The study also carried out simulations with χ = 0.1 and 0.4 and reported that having a thinner 
and thicker shell produces similar trends in the critical quantities with respect to E, with mc being larger for 
thinner shells and smaller for thicker shells. The study used an inverse-squared gravity profile, showing that the 
linear scaling laws of Busse (1970) are possibly independent of the gravity profile used. There have been several 
numerical studies on the topic since then all of which focus on a uniformly heated spherical shell and a linear 
gravity profile (Ardes et al., 1997; Zhang, 1991, 1992; Zhang & Busse, 1987; Zhang & Jones, 1993). The most 
complete spherical shell study was done by Dormy et al. (2004) following the footsteps of the global stability 
analysis of Jones et al. (2000). They analyzed both volumetrically and differentially heated spherical shells with 
a linear gravity profile with the fluid having Pr = 1. They performed a WKB-approximation followed by an Airy 
equation type analysis to obtain semianalytical solutions to the problem, which matched well with the numerical 
solutions. However, all of the studies listed above focus on a few different values of the shell radius ratio. This 
led Al-Shamali et al. (2004) to perform 3D simulations using the MagIC code (Wicht, 2002) for three different 
E ≤ 10 −4 and several different radius ratios ranging from χ = 0.1 to χ = 0.92. They performed least-squares fit to 
their data and obtained simple empirical rules of thumb for Rac and mc as a function of E and χ.

Our present study builds on the studies of Dormy et al. (2004) and Al-Shamali et al. (2004). We study the onset 
of convection in differentially heated spherical shells with Pr = 1. We use the open source eigenvalue code Kore 

Figure 1.  The geometry for studying onset of convection in rotating spherical 
shells. Subscripts “I” and “o,” respectively, denote quantities related to inner 
and outer boundaries.
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(https://bitbucket.org/repepo/Kore/) to determine the critical parameters for convection (Rac, mc, ωc) for five 
different E ranging from 10 −3 to 10 −7 and 31 different values of χ ranging from 0.05 to 0.95. To date, this is the 
largest parameter space covered for this problem. Our aim is to determine these critical quantities as a function of 
E and χ and to make the database of critical quantities openly available to the user community.

The paper is organized as follows. Section 2 sets up the governing equations. Section 3 provides the details of 
the numerical method used to solve the eigenvalue problem and to determine the critical quantities for onset of 
convection. Section 4 then discusses the results, considering the trends in mc, followed by the trends in Rac and 
ωc. Thereafter, we analyze the thickness of the viscous boundary layers, the radial extent of the convective modes, 
and the spiral nature of these modes. Section 5 compares our numerical solutions to the asymptotic theory of 
Dormy et al. (2004). Section 6 discusses how our data set can be used to estimate critical quantities through inter-
polation. The main text of the paper ends with a summary and discussion in Section 7. Appendix A provides the 
spectral formulation of viscous dissipation. The data set of critical quantities, data for profiles of viscous dissipa-
tion and kinetic energy, along with a Jupyter Notebook and other scripts to analyze them are provided as Support-
ing Information S1 and are available at https://github.com/AnkitBarik/convection_onset_radratio (Barik, 2022). 
These will help generate the figures and tables provided in the paper.

2.  Governing Equations
The setup consists of a viscous incompressible fluid inside a spherical shell with thickness L = ro − ri, rotating 
at a rate Ω, as shown in Figure  1. The temperature difference between the two spherical boundaries is held 
fixed at ΔT = Ti − To, where subscripts i and o denote quantities at inner and outer boundaries, respectively. We 
restrict ourselves to fixed temperature boundary conditions at both boundaries for this study. The fundamental 
equations governing the fluid dynamics of the system are the Navier-Stokes and heat equations combined with 
mass continuity

𝜌𝜌

(

𝜕𝜕𝐮𝐮

𝜕𝜕𝜕𝜕
+ 𝐮𝐮 ⋅ ∇𝐮𝐮

)

= −∇𝑝𝑝 − 2𝜌𝜌Ω𝐳̂𝐳 × 𝐮𝐮 − 𝜌𝜌𝜌𝜌𝐫̂𝐫 + 𝜌𝜌𝜌𝜌∇2
𝐮𝐮� (1)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝐮𝐮 ⋅ ∇𝜗𝜗 + 𝜅𝜅∇2

𝜗𝜗� (2)

∇ ⋅ 𝐮𝐮 = 0� (3)

where u, p, ρ, and ϑ denote fluid velocity, pressure, density, and temperature, respectively. We separate out these 
variables into a spherically symmetric part at equilibrium, denoted by overbars and a perturbation, denoted by primes

𝐮𝐮 = 𝐮̄𝐮 + 𝐮𝐮
′
, 𝑝𝑝 = 𝑝̄𝑝 + 𝑝𝑝

′
, 𝜌𝜌 = 𝜌̄𝜌 + 𝜌𝜌

′
, 𝜗𝜗 = 𝜗̄𝜗 + 𝜗𝜗

′� (4)

The equilibrium state consists of the hydrostatic equilibrium 𝐴𝐴 (𝐮̄𝐮 = 𝟎𝟎) and the conductive temperature profile 
(Dormy et al., 2004)

∇𝑝̄𝑝 = −𝜌̄𝜌𝜌𝜌(𝑟𝑟)𝐫̂𝐫� (5)

∇2�̄ = 0 ⇒
��̄
��

= ����
�� − ��

1
�2
Δ�� (6)

Subtracting 5 from 1, we obtain the perturbation equation

𝜌̄𝜌
𝜕𝜕𝐮𝐮

′

𝜕𝜕𝜕𝜕
= −∇𝑝𝑝′ − 2𝜌̄𝜌Ω𝐳̂𝐳 × 𝐮𝐮

′ − 𝜌𝜌
′
𝑔𝑔𝐫̂𝐫 + 𝜌̄𝜌𝜌𝜌∇2

𝐮𝐮
′� (7)

where we have dropped the nonlinear term u  ⋅ ∇u by considering the perturbations to be small and used the 
Boussinesq approximation in which the perturbation in density only occurs in the buoyancy term. Finally, using 
the equation of state 𝐴𝐴 𝐴𝐴

′ = −𝛼𝛼 𝛼𝛼𝛼𝛼𝛼′ , we obtain

𝜕𝜕𝐮𝐮
′

𝜕𝜕𝜕𝜕
= −

1

𝜌̄𝜌
∇𝑝𝑝′ − 2Ω𝐳̂𝐳 × 𝐮𝐮

′ + 𝛼𝛼𝛼𝛼
′
𝑔𝑔𝑜𝑜

(

𝑟𝑟

𝑟𝑟𝑜𝑜

)

𝐫̂𝐫 + 𝜈𝜈∇2
𝐮𝐮
′� (8)

Here, we have assumed a linear gravity profile g = go(r/ro), applicable to the terrestrial planets with their approx-
imately constant density fluid cores. Following a similar procedure with Equations 2 and 6 we obtain
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𝜕𝜕𝜕𝜕
′

𝜕𝜕𝜕𝜕
= −𝑢𝑢𝑟𝑟

𝑑𝑑𝜗̄𝜗

𝑑𝑑𝑑𝑑
+ 𝜅𝜅∇2

𝜗𝜗
′� (9)

In nondimensionalizing the perturbation equations, shell thickness L is chosen as the length scale, the rotational 
time 1/Ω as the time scale and temperature contrast ΔT as the temperature scale. This gives us the following 
nondimensional equations:

𝜕𝜕𝐮𝐮
′

𝜕𝜕𝜕𝜕
= −∇𝑝𝑝′ − 2𝐳̂𝐳 × 𝐮𝐮

′ +
𝑅𝑅𝑅𝑅𝑅𝑅

2

Pr

(

𝑟𝑟

𝑟𝑟𝑜𝑜

)

𝜗𝜗
′
𝐫̂𝐫 + 𝐸𝐸∇2

𝐮𝐮
′� (10)

𝜕𝜕𝜕𝜕
′

𝜕𝜕𝜕𝜕
= −𝑢𝑢𝑟𝑟

𝑑𝑑𝜗̄𝜗

𝑑𝑑𝑑𝑑
+

𝐸𝐸

Pr
∇2

𝜗𝜗
′� (11)

The perturbation equations decouple in azimuthal symmetry m and thus we look for separable solutions in the 
form of Fourier modes

(

𝐮𝐮
′
, 𝑝𝑝

′
, 𝜗𝜗

′
)

≡
(

𝐮𝐮
′
, 𝑝𝑝

′
, 𝜗𝜗

′
)

𝑒𝑒
i𝑚𝑚𝑚𝑚+𝜆𝜆𝜆𝜆� (12)

where λ = σ + iω. The real part σ gives the nondimensional growth rate of a mode while the imaginary part ω 
provides the nondimensional frequency at which the mode drifts along the azimuth, the rate of drift being ω/m. 
The objective is to determine Ra at convective onset for a given set of E, Pr, χ, m where the growth rate σ = 0.

3.  Numerical Method
We take the curl of the Navier-Stokes equation to eliminate pressure and decompose the velocity field into poloi-
dal 𝐴𝐴 () and toroidal 𝐴𝐴 ( ) potentials

𝐮𝐮
′ = ∇ × ∇ × 𝐫𝐫 + ∇ ×  𝐫𝐫� (13)

Considering a single azimuthal symmetry (m) at a time, we expand the three unknown scalars 𝐴𝐴 ( ,  , 𝜗𝜗
′) into 

spherical harmonics Ylm(θ, ϕ) in the angular direction, e.g.

(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) =

𝑙𝑙
max
∑

𝑙𝑙=𝑚𝑚

𝑙𝑙𝑙𝑙(𝑟𝑟)𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃𝜃𝜃𝜃 )� (14)

where Ylm(θ, ϕ) denotes a Schmidt seminormalized spherical harmonic. Order l ranges from m to our truncation 
lmax since we only consider one azimuthal symmetry or degree m at a time. In the radial direction, a memory effi-
cient sparse spectral method from Olver and Townsend (2013) is used. This method uses Chebyshev polynomials 
to expand 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟) and 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟) , and Gegenbauer polynomials for their derivatives. Continuing the previous example

𝑙𝑙𝑙𝑙(𝑟𝑟) =

𝑁𝑁
∑

𝑛𝑛=0

𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝑛𝑛(𝑟𝑟)� (15)

where Cn(r) is a Chebyshev polynomial of the first kind and N denotes the maximum truncation level used. 
No-slip and fixed temperature boundary conditions are imposed at both boundaries using

𝑙𝑙𝑙𝑙(𝑟𝑟𝑏𝑏) =
𝑑𝑑𝑙𝑙𝑙𝑙

𝑑𝑑𝑑𝑑

|

|

|

|𝑟𝑟=𝑟𝑟𝑏𝑏

= 0� (16)

𝑙𝑙𝑙𝑙(𝑟𝑟 = 𝑟𝑟𝑏𝑏) = 0� (17)

𝜗𝜗
′
𝑙𝑙𝑙𝑙
(𝑟𝑟 = 𝑟𝑟𝑏𝑏) = 0� (18)

where rb = ri, ro denotes a radial boundary. The equations for the poloidal and toroidal potentials are obtained by 
taking the double-curl and curl of the Navier-Stokes Equation 10, respectively. Substituting the above expansions 
and rearranging the resulting spectral equations in a matrix form yields the generalized eigenvalue problem

𝐀𝐀 = 𝜆𝜆𝐁𝐁𝐁𝐁� (19)

where x is the eigenvector of unknown coefficients (𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛𝑛𝑛 , 𝐴𝐴 𝐴𝐴
′
𝑛𝑛𝑛𝑛𝑛𝑛

 ). The truncation levels N and lmax are linked 
together so that lmax ∼ 2N. For instance, the calculations at E = 10 −7 used N = 480 and lmax = 1,026, which guar-
antees excellent convergence. We also check the energy balance of each solution. For that purpose, we define a 
residual 𝐴𝐴  as
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 =
|𝜀𝜀 +𝜈𝜈|

max{|𝜀𝜀|, |𝜈𝜈|}
� (20)

where � = �∫ � ⋅ ∇2� d�  is the total viscous dissipation over the whole 

fluid volume and 𝐴𝐴 𝜀𝜀 = 2𝐸𝐸 ∫ ∇̂𝐮𝐮 ∶ ∇̂𝐮𝐮 d𝑉𝑉  is the rate of change of the internal 

energy, with 𝐴𝐴 ∇̂𝐮𝐮 being the rate-of-strain tensor. Ideally, with no-slip boundary 
conditions, it should be verified that 𝐴𝐴 𝜀𝜀 = −𝜈𝜈 and thus 𝐴𝐴  = 0 . We adjust 
the truncation levels N for each combination of χ and E so that the solu-
tions are properly converged and with 𝐴𝐴  ≤ 10−3 . This is ensured for all cases 
except for 𝐴𝐴 𝐴𝐴 = 10−9 and 𝐴𝐴 𝐴𝐴 = 0.35 for which 𝐴𝐴  ≈ 4 × 10−2 .

Equation 19 is solved using a shift-and-invert spectral transformation with 
the packages PETSc (Balay et al., 1997, 2019, 2021) and SLEPc (Hernandez 
et al., 2005; Roman et al., 2019), which in turn use the parallel MUMPS solver 
(Amestoy et al., 2001, 2006). The eigenvalue code to assemble and solve the 

problem is called Kore. It is open source and has been used for computing rotational eigenmodes of planets in 
Rekier et al. (2019) and Triana et al. (2021) where further details of the numerical method can also be found. 
Kore can compute eigenmodes of any combination of rotating Navier-Stokes, magnetic induction, thermal, 
and chemical transport equations and can work with extreme, near-realistic planetary parameters such as those 
in Triana et al. (2021). All commonly employed boundary conditions are available to use such as no-slip/free-
slip for mechanical, fixed temperature/heat-flux for thermal and conducting/insulating boundaries for magnetic 
boundary conditions. The heating mode can be chosen to be differential (as in this study) or using internal heat 
sources. Kore can also optionally be run without an inner core. From our own tests, the optimum number of 
cpu's for a single eigenvalue calculation is between 14 and 24, regardless of the size of the matrices. Large size 
computations are in fact memory bound, and adding more cpu's might even be detrimental. Ultimately, round-
off errors are the limiting factor to large problems (i.e., small Ekman numbers). Additionally, we use the SHTns 
library (Ishioka, 2018; Schaeffer, 2013) for spherical harmonic transforms during postprocessing.

3.1.  Example Case

For a fixed E and χ, we survey different azimuthal symmetries m and determine the corresponding critical 
Rayleigh numbers Rac for convection, when the real part of the eigenvalue becomes positive. For each m value, 
we provide an initial guess Ra1. A function takes the growth rate σ1 for Ra1 and searches around that value for an 
Ra2 such that the corresponding growth rate σ2 has the opposite sign, σ1σ2 < 0. Once the two bounds are found, 
we perform a root-finding search using Brent's method to determine the critical value Rac at which σc = 0 up to a 
tolerance of 10 −6 in log10(Rac). We repeat the previous two steps for several m and find a trend in Rac (Figure 2). 
The minimum of the curve gives the value of the critical Rayleigh number Rac for this set of E and χ values, as 
well as the corresponding azimuthal wavenumber mc and the critical drift frequency ωc of the thermal Rossby 
mode at the onset of convection. The example shown is at E = 10 −5 and χ = 0.35 for which Rac = 1.05567 × 10 7, 
mc = 15 in good agreement with values listed in Table 1 of Christensen and Aubert (2006). We benchmarked our 
code against some of the cases from Table 5 of Dormy et al. (2004) for χ = 0.35. The values we obtain differ by 
<0.1% in Rac and less than half a percent in ωc, as listed in Table 1.

Figure 2.  Example of determining Rac for E = 10 −5 and χ = 0.35 at Pr = 1. 
The black cross marks the critical values.

E 𝐴𝐴 𝐴𝐴𝐴𝐴
𝐷𝐷

𝑐𝑐   Rac 𝐴𝐴 𝐴𝐴
𝐷𝐷

𝑐𝑐   mc 𝐴𝐴 𝐴𝐴
𝐷𝐷

𝑐𝑐   ωc %ΔRac %Δωc

4.734 × 10 −5 1.6525 × 10 6 1.654042 × 10 6 9 9 −0.011003 −0.011016 0.09 0.11

4.734 × 10 −6 2.6279 × 10 7 2.627005 × 10 7 19 19 −0.005691 −0.005706 0.03 0.26

4.734 × 10 −7 4.6180 × 10 8 4.616863 × 10 8 40 40 −0.002804 −0.002806 0.02 0.07

Note. The aspect ratio and Prandtl number are fixed at χ = 0.35, Pr = 1, respectively. The values with a superscript D are from 
Dormy et al. (2004) with suitable conversions to the definitions used here, while the columns without a D are our results. The 
percentage differences in the critical Rayleigh number and frequency are denoted by %Δ.

Table 1 
Benchmarking Our Method Against Dormy et al. (2004)
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4.  Results
Using the above method, we computed the critical values of the set (mc, Rac, ωc) for the onset of convection for the 
following control parameters: E = (10 −3, 10 −4, 10 −5, 10 −6, 10 −7), and χ = 0.05 to 0.95 in steps of 0.03. The results 
are summarized in Figure 3. We recall the leading order asymptotic scalings of these quantities with respect to 
the Ekman number, obtained by linear stability analyses (Busse, 1970; Dormy et al., 2004; Gilman, 1975; Jones 
et al., 2000; Roberts, 1968).

𝑚𝑚𝑐𝑐 ∼ 𝐸𝐸
−1∕3� (21)

𝑅𝑅𝑅𝑅𝑐𝑐 ∼ 𝐸𝐸
−4∕3� (22)

𝜔𝜔𝑐𝑐 ∼ 𝐸𝐸
1∕3� (23)

Equation 21 indicates that the critical wavenumber at onset will increase with decreasing Ekman number, leading 
to progressively thinner columnar convective modes. Equation 22 describes the fact that rotation inhibits convec-

Figure 3.  Summary of results. The horizontal axis for each plot denotes radius ratio χ while darker lines show a lower 
Ekman number E. The vertical axes show (a) the critical azimuthal wavenumber mc, (c) the critical Rayleigh number Rac, 
and (e) the critical drift frequency ωc, while (b), (d), and (f) show the vertical axes compensated by the respective scalings in 
Equations 21–23. The Prandtl number is held fixed at unity in this study.
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tion and thus, a spherical shell needs a higher thermal driving or Rayleigh number for the onset of convection at 
lower Ekman numbers. Equation 23 tells us that as the Ekman number is reduced, the convective thermal Rossby 
modes drift with a progressively lower angular frequency.

4.1.  Variation in mc

The variation of the critical azimuthal wavenumber mc with E and χ is shown in Figure 3a. The critical wavenum-
ber mc increases at lower E and higher χ (equivalent to thinner shells). We compensate mc with an E 1/3 scaling 
(Equation 21) in Figure 3b demonstrating how the curves for different Ekman numbers collapse onto a single 
curve. The onset of convection for the differential heating setup always takes place at the cylinder tangent to the 
inner sphere at the equator, also known as the tangent cylinder (TC; Dormy et al., 2004). Thus, the number of 
convective cells or columns is restricted by the circumference of the TC with respect to the shell thickness, i.e., 
mc ∝ 2πri/L = 2πχ/(1 − χ). This explains the increase of mc with χ. Mathematically

𝑚𝑚𝑐𝑐 = 𝑓𝑓 (𝐸𝐸𝐸 𝐸𝐸)2𝜋𝜋

(

𝑟𝑟𝑖𝑖

𝑟𝑟𝑜𝑜 − 𝑟𝑟𝑖𝑖

)

𝐸𝐸
−1∕3 = 𝑓𝑓 (𝐸𝐸𝐸 𝐸𝐸)

(

2𝜋𝜋

𝜒𝜒−1 − 1

)

𝐸𝐸
−1∕3� (24)

where f is an unknown function to be determined. The dependence on χ is similar to that considered in Al-Shamali 

et al. (2004). We take the ratio of mc and the expression 𝐴𝐴

(

2𝜋𝜋

𝜒𝜒−1 − 1

)

𝐸𝐸
−1∕3 to determine the nature of f as shown in 

Figure 4b. This shows that f has little variation with E and χ, especially for E ≤ 10 −5. To determine f, we took 
the mean of mcE 1/3 for only the asymptotic Ekman numbers 10 −6 and 10 −7 at each value of χ and performed a 

least-squares fit of this mean value against 𝐴𝐴 𝐴𝐴

(

2𝜋𝜋

𝜒𝜒−1 − 1

)

 with f being the only fit parameter. This gives a value of 
f = 0.09169. The curves for mcE 1/3 along with the fit is shown in Figure 4a. Thus, we find

𝑚𝑚𝑐𝑐 = 0.09169

(

2𝜋𝜋

𝜒𝜒−1 − 1

)

𝐸𝐸
−1∕3� (25)

In order to verify the accuracy of Equation 25, we compare our prediction against actual values for different 
parameters in Table 2. The predicted values are close to the actual values with a mean error of about 15%.

4.2.  Variation of Rac

Rac values increase with decreasing Ekman number as expected from linear theory of rotating convection and 
decrease with increasing radius ratio, qualitatively similar to that observed by Al-Shamali et al. (2004). As shown 
in Figure 3c, the trend of Rac with respect to χ are curves which are flat near the middle with horizontal “S”-shaped 

variations near the ends. The curves look similar for all E. We compensate the 
values by the asymptotic scaling and plot RacE 4/3 with respect to χ, provid-
ing Figure 3d. The asymptotic scaling leads to a relatively good collapse of 
the curves for all χ, with the variation in RacE 4/3 being less than 2 orders of 
magnitude compared to the variation in Rac values which are close to 6 orders 
of magnitude. However, the range by which the data collapses with this scal-
ing is much better for higher values of χ. An attempt to improve the collapse 
by using outer boundary radius as the length scale did not work. Switching 
to ro as length scale implies a multiplication of RacE 4/3 by (1 − χ) 1/3, which is 
close to order unity for the full range in χ (ranges from ∼0.4 to ∼1).

Figure 5 plots RacE 4/3 with respect to E for different values of χ. This visu-
alization makes clear that the Rac values asymptotically approach the linear 
scaling for all radius ratios. However, the asymptotic scaling is first reached 
at higher Ekman numbers in the thinner shells (higher χ). The approach to 
asymptoticity is best seen for χ = 0.35 where we perform additional compu-
tations and extend the range of E to 10 −9.

Figure 4.  Variation of mc with χ. The vertical axis shows the ratio of mcE 1/3 
and 𝐴𝐴 2𝜋𝜋∕

(

𝜒𝜒
−1 − 1

)

 , with the horizontal cyan line showing the value of f 
obtained from a least-squares fit.
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4.3.  Variation of ωc

Since the wavenumber, m is always positive in the convention followed in 
this study, negative frequencies (ω < 0) indicate modes that drift in the same 
direction as the rotation of the shell (prograde). Since thermal Rossby waves 
in spherical shells outside the TC at the onset of convection, are prograde in 
nature (Busse & Or, 1986), all our mode frequencies are thus negative and 
we focus on their magnitudes. As seen in Figure 3e, the magnitudes of ωc 
decrease with E in general, as expected from linear theory. For each E, |ωc| 
increases with χ, reaches a flat middle and then decreases again. The curve 
for E = 10 −3 is the only one that crosses other curves for E = 10 −4 and 10 −5.

Figure 3f shows that the asymptotic scaling ωc ∼ E 1/3 collapses the curves well 
for different E, especially those at low E. Similar to Figure 5 for Rac, we plot 
ωcE −1/3 with respect to E for different values of χ in Figure 6. This shows that 
the ωc values approach an asymptotic scaling as E is lowered, for all radius 
ratios. This is especially evident from the low E, χ = 0.35 curve. However, it 
can be seen that the asymptotic regime is reached at higher Ekman numbers 
for low and moderate radius ratios but requires lower E for thinner shells.

4.4.  Mode Morphology

The morphology of the convective modes is a function of E and χ. All the Pr = 1 onset modes are quasi-geostrophic, 
are attached to the TC, and satisfy the Taylor-Proudman constraint to leading order. Figure 7 shows equatorial 
slices of radial velocity at two different Ekman numbers and three different radius ratios and is illustrative of the 
effect of both parameters on onset mode morphology. In particular, we can see that a lower Ekman number leads 
to thinner columns concentrated closer to the TC. Thicker shells have modes spiraling outward from the TC while 
modes in thinner shells get progressively more oriented along the cylindrical radial direction. This is similar to 
findings in the case of a cylindrical annulus by Pino et al. (2000, 2001). Furthermore, it is known that the thick-
ness of the boundary layers and the extent of the modes in cylindrical radius (perpendicular to the rotation axis) 
depend on the Ekman number under consideration (Dormy et al., 2004).

4.4.1.  Boundary Layers

To determine the thickness of the viscous boundary layers, we use radial profiles of viscous dissipation 𝐴𝐴 𝜈𝜈(𝑟𝑟) , 
which can be computed in spectral space (expression provided in Appendix  A). We use a slope intersection 
method similar to Gastine et al. (2015). Two examples are shown in Figure 8 for E = 10 −6 and χ = 0.5. The bound-
ary layer thickness is determined by the intersection of a linear fit to the dissipation profile near the boundary with 
a linear fit to the bulk profile near the boundary, beyond the “elbow” of the curve. These are marked by black 
dashed lines in Figure 8. For the outer boundary, we consider (ro − r)/E 1/2 ≤ 20 while for the inner boundary, we 
consider (r − ri)/E 1/3 ≤ 5. These choices are made to restrict ourselves to regions near the boundaries and avoid 

regions in the bulk where these profiles become unfavorable to linear fit, 
especially for thin shells. E 1/2 and E 1/3 factors are motivated by theoretical 
boundary layer thickness scalings (Dormy et al., 2004; Proudman, 1956).

Figure 9a shows the variation of spherically averaged boundary layer thickness 
at the outer boundary, δo, as a function of E and χ. As expected, δo decreases 
with Ekman number and there is very little variation with χ. For each value 
of χ, we fit an exponential law δo = a(χ)E b(χ) to the data for 10 −4 ≤ E ≤ 10 −7. 
This yields Figure 9b. We see that the exponent b shows very little variation 
and is constant around 0.5 with a mean of 0.506 ± 0.005. Thus, the thickness 
of the outer boundary scales the same as a classic Ekman layer in a rotat-
ing spherical shell, δo ∝ E 1/2 (Proudman, 1956). The prefactor a shows an 
increase with χ but is always of 𝐴𝐴 (1) . Figures 9d and 9e show the same analy-
sis repeated for the inner boundary layer where Dormy et al. (2004) predict a 
scaling of E 1/3 for the boundary layer thickness at the inner boundary. We find 

χ E Computed mc Predicted mc (rounded) % error

0.11 10 –5 3 3 0.0

0.11 10 –6 6 7 14.3

0.11 10 –7 13 15 13.3

0.35 10 –5 15 14 7.1

0.35 10 –6 32 31 3.2

0.35 10 –7 67 67 0.0

0.35 10 –9 305 310 1.7

0.92 10 –5 316 308 2.6

0.92 10 –6 668 663 0.8

0.92 10 –7 1,427 1,427 0.0

Table 2 
Comparison of Prediction From Equation 25 Against Actual Values

Figure 5.  Plot of Rac versus E, with the compensated scaling Equation 22 for 
different values of χ. The case of χ = 0.35, shown in black, has been computed 
over the range 10 −9 ≤ E ≤ 10 −3.
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that the scaling exponent is roughly constant with χ with a mean value of 0.385 ± 0.013, slightly deviating from 
Dormy et al. (2004). The prefactor again shows an increase with radius ratio and is always 𝐴𝐴 (1) . This scaling is 
reminiscent of the equatorial Ekman layer thickness of 𝐴𝐴 

(

𝐸𝐸
2∕5

)

 (Marcotte et al., 2016; Stewartson, 1966).

The thickness of the boundary layers can also be determined using the horizontal velocity magnitude 

𝐴𝐴 𝐴𝐴ℎ =

(

𝑢𝑢
2

𝜃𝜃
+ 𝑢𝑢

2

𝜙𝜙

)

 . Figure 10a shows radial profiles of azimuthally averaged horizontal velocity magnitude at differ-

ent colatitudes. The black line shows the profile obtained by averaging over all colatitudes. The profiles and 
hence the boundary layer thickness near the inner boundary are dependent on latitude. However, taking a mean 
over all colatitudes leads to a boundary layer thickness that coincides with that at the equator (Figure 10b). This 
is the reason why the boundary layer thickness near the inner boundary is dominated by the equatorial Ekman 
layer scaling as noted above. For the boundary layer near the outer boundary, however, the profiles are quite 
similar to each other and lead to similar boundary layer thickness (Figure 10c). Estimating the boundary layer 
thickness using horizontal velocity leads to similar scalings as those obtained from dissipation profiles as shown 
in Figures 9c and 9f. The scaling laws are summarized in Table 3.

4.4.2.  Radial Extent of Modes

To quantify the cylindrical radial extent of the quasi-geostrophic convective modes, we use profiles of their 
kinetic energy

𝑘𝑘𝑘𝑘𝑘𝑘 =
1

2

(

𝑢𝑢
2
𝑟𝑟 + 𝑢𝑢

2

𝜃𝜃
+ 𝑢𝑢

2

𝜙𝜙

)

� (26)

Figure 6.  Plot of variation of |ωc| with E, with the compensated scaling (Equation 23) for different values of χ. The case of 
χ = 0.35, shown in black, has been computed over the range 10 −9 ≤ E ≤ 10 −3.

Figure 7.  Onset mode structure shown as sectors of equatorial slices. The upper three sectors represent solutions at E = 10 −5 
at three different radius ratios, while the lower three sectors show the same for E = 10 −7. Colors represent radial velocity ur 
with red (blue) being positive/outward flow (negative/inward flow). In this study, Pr = 1 in all cases.
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along the cylindrical radial direction. We use the mean of the kinetic energy in the zonal and vertical directions 
𝐴𝐴 𝑘𝑘𝑘𝑘𝑘𝑘(𝑠𝑠) = ⟨𝑘𝑘𝑘𝑘𝑘𝑘⟩𝜙𝜙𝜙𝜙𝜙 and normalize it to its maximum. The z-averaging is performed using a fourth-order interpo-

lation (available in the MagIC repository: https://github.com/magic-sph/magic). Scaling the cylindrical distance 
from the TC by E 2/9 provides an excellent collapse of the kinetic energy profiles for all Ekman numbers. This 
is shown for three different values of χ in Figure 11. This is consistent with the E 2/9 scaling provided by Dormy 
et al. (2004), with very little variation with radius ratio. We find that the kinetic energy of the modes in all cases 
is limited to an extent around (s − ri)/E 2/9 ≈ 5 which gives us the scaling law

𝑠𝑠max − 𝑟𝑟𝑖𝑖 ≈ 5𝐸𝐸2∕9� (27)

where smax is the maximum extent of the mode in the cylindrical radial direction. The modes at E = 10 −3 span 
almost the full extent of the shell and hence, have been omitted in this analysis.

4.4.3.  Spiral Nature of Modes

The convective modes at onset are often “spiral” in nature in the direction perpendicular to the rotation axis 
(Dormy et al., 2004; Takehiro, 2008; Zhang, 1992), as seen in 3D in Figure 12a. However, this spiral nature 

Figure 8.  Boundary layer thickness estimation using the slope intersection method for (E = 10 −6, χ = 0.5) at (a) r = ri and 
(b) r = ro. The horizontal axis shows distance from the boundary while the vertical axis shows dissipation integrated in the 
angular directions. The dissipation is normalized to the respective boundary value. The gray zone shows the boundary layer.

Figure 9.  Top panels: (a) shows the boundary layer thickness at the outer boundary (δo) as a function of Ekman number and 
radius ratio. (b) shows the variation of prefactor, a and exponent b in the expression δo = aE b, as a function of radius ratio. (c) 
shows the same as (b) but when horizontal velocity profiles are used instead of dissipation profiles. Bottom panels: (d), (e), 
and (f) show the same as (a), (b), and (c) respectively, but for the inner boundary.
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depends on the thickness of the shell. For thick shells, the modes tend to spiral out in a more curvilinear fashion 
as compared to thin shells where the modes extend almost linearly outwards. In order to quantify the curvilinear 
nature of the modes, we use a comparison to the Archimedean spiral: s = bϕ, whose curvature is proportional to 
1/b = dϕ/ds. For each mode, we use an equatorial slice and track the phase difference in subsequent radial levels 
using cross correlation of normalized radial velocity at that radial level against the normalized radial velocity at 
smax, till the cylindrical radial extent smax of the mode is reached (Figure 12b). Thereafter, we quantify the curva-
ture of the mode using ratio of the maximum extent of the mode in azimuth (Δϕ) to that in cylindrical radius 
(Δs) (Figure 12c). We see that the curvature goes down with shell thickness, agreeing with our conclusions using 
a visual inspection of Figure 7. Interestingly the spiralization does not seem to strongly depend on the Ekman 
number.

5.  Comparison With Asymptotic Theory
The asymptotic theory of Dormy et al.  (2004) provided a method to reduce the complex problem of onset of 
convection to a combination of a one-dimensional ordinary differential equation and successive corrections in E 
to the leading order scaling laws

𝑅𝑅𝑅𝑅𝑐𝑐 = 𝐸𝐸
−4∕3

(

𝑐𝑐 + 𝐸𝐸
2∕9

1 + 𝐸𝐸
1∕6

̃
)

� (28)

𝜔𝜔𝑔𝑔𝑔𝑔 = 𝐸𝐸
1∕3

(

𝜔𝜔
𝑔𝑔𝑔𝑔

𝑐𝑐 + 𝐸𝐸
2∕9

𝜔𝜔
𝑔𝑔𝑔𝑔

1
+ 𝐸𝐸

1∕6
𝜔̃𝜔

𝑔𝑔𝑔𝑔
)

� (29)

where subscripts c and 1 on the RHS denote zeroth-order and first-order corrections in E 2/9 while ˜ is the E 1/6 
correction added for no-slip boundaries. gv denotes the “group velocity” reference frame. The transformation to 
frame rotating with the spheres is done using

𝜔𝜔𝑐𝑐 = 𝜔𝜔𝑔𝑔𝑔𝑔 + 𝐸𝐸
−1∕3

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

𝑐𝑐

𝑚𝑚𝑐𝑐� (30)

Since a correction to both the critical wavenumber and drift frequency is not possible using the asymptotic theory, 
we follow the same strategy as Dormy et al. (2004) and use the numerical values of mc (appropriately interpo-
lated to obtain smooth curves). Dormy et al. (2004) provides values for these corrections for differential heating 

only for χ = 0.35. We use them and compare our numerical solutions, shown 
in blue in Figures 13 and 14. In case of Rac, the two agree very well, espe-
cially for E ≤ 10 −5. For ωc, the agreement becomes progressively better for 
E ≤ 10 −7. We also obtain and compare the corresponding corrective param-
eters using a least-squares fit. For χ = 0.5, 0.74, we have obtained additional 
critical parameters for E = 10 −5.5, 10 −6.5. We use these values to compute the 
corrective parameters using least-squares fit for E ≤ 10 −5, shown by solid 
lines for these radius ratios. The curves are extended to E > 10 −5 to show how 
they deviate. The values of corrections are provided in Table 4.

Figure 10.  Radial profiles of azimuthally averaged horizontal velocity magnitude uh at E = 10 −5, χ = 0.35, Pr = 1 at different 
colatitudes θ. The black line shows the profile averaged over all colatitudes. (a) shows all the profiles while (b) and (c) zoom 
in near the inner and outer boundaries, respectively. Gray shaded regions show boundary layer thicknesses computed using 
the mean (black) profile.

Profile Outer boundary Inner boundary

Dissipation δo ∼ E 0.506±0.005 δi ∼ E 0.385±0.013

Velocity δo ∼ E 0.493±0.013 δi ∼ E 0.401±0.004

Table 3 
Scaling Laws for Boundary Layer Thicknesses Obtained Using Profiles of 
Dissipation and Nonradial Velocity
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Dormy et al. (2004) also provide the asymptotic solution in the form of an Airy function. Considering the cylin-
drical radial component

𝑢𝑢𝑠𝑠 ∼ 𝐴𝐴𝐴𝐴(−𝜆𝜆𝜆𝜆 + 𝜌𝜌0)� (31)

where ρ0 ≈ −2.338 is the smallest zero of the Airy function, x = (s − ri)/E 2/9 and λ = −1.02657 − 0.82534i for 
χ = 0.35. We use this to compare our solutions at χ = 0.35 to that of Dormy et al. (2004) in Figure 15, which 
demonstrate that our eigenfunction solutions obtained from Kore closely resemble the Airy function structure.

Figure 11.  Radial extent of modes with Pr = 1. The vertical axis shows the normalized flow kinetic energy averaged in 
azimuth and z, while the horizontal axis shows the cylindrical radial distance from the tangent cylinder (TC), scaled by 
E 2/9. This is shown for Ekman numbers 10 −4 ≤ E ≤ 10 −7 and three different radius ratios, (a) χ = 0.11, (b) χ = 0.50, and (c) 
χ = 0.92.

Figure 12.  The spiral nature of convective modes. (a) shows a convective mode in 3D at E = 10 −5, χ = 0.35 with isosurfaces 
and an equatorial slice of radial velocity. (b) shows an example of the correlation tracking using normalized radial velocity, 
at E = 10 −5, χ = 0.11. Connected black dots track the phase which maximizes the correlation at each radial level, providing a 
measure of the spiral nature of the mode. (c) shows how our quantitative measure of the spiral nature of modes varies across 
Ekman numbers and radius ratios.
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6.  Using This Data Set
Due to the broad parameter space covered, the data set of critical quantities generated from this study can be 
used to estimate critical quantities anywhere in the range covered through interpolation. With our dense cover-
age in χ, we find that none of the critical quantities have a very large variation from one χ value to the next. 
Thus, to estimate mc and Rac at a certain E and χ value, one can consider the data at the nearest χ that we have 
computed. Thereafter, fitting a scaling law against E and interpolating to the desired E will yield the desired 
critical quantities. Figure 16 illustrates a case for E = 3 × 10 −6 and χ = 0.81. Radius ratio χ = 0.81 does not 
exist in our database; hence, we consider the data at the nearest radius ratio in our data set, χ = 0.80. There-
after, we perform a linear fit in E. The cyan triangles mark the values computed using Kore which lie pretty 
well on the straight line fit. Table 5 lists critical values computed with Kore at three randomly chosen E and 
χ not present in the data set and compares them with values obtained by interpolation as well as Equation 25 
for mc. The errors in estimation are at most 13% for Rac and 5% for mc, illustrating the usefulness of the data 
set. Further, one may use our data set to obtain least-squares fit values for higher order correction terms in 
the asymptotic theory of Dormy et al. (2004), providing critical quantity estimates beyond the ranges of our 
current computational capabilities.

7.  Summary and Discussion
In this study, the heat equation has been added to sparse spectral eigenvalue code Kore, enabling the investiga-
tion of the onset of convection in rotating spherical shells. We have built upon previous studies and performed an 
extensive exploration of the parameter space in Ekman number 10 −3 ≤ E ≤ 10 −7 and radius ratio 0.05 ≤ χ = ri/
ro  ≤  0.95 and computed the critical wavenumber mc, the critical Rayleigh number Rac and the critical drift 
frequency ωc at the onset of convection. As predicted by asymptotic scaling laws (Busse, 1970; Dormy et al., 2004; 
Roberts, 1968), mc obeys mc ∼ E −1/3 across all radius ratio values; however, there is a strong increase with χ. This 
can be explained considering that mc is proportional to the circumference of the TC, giving us a rule of thumb that 
predicts mc to within a mean error of about 15%. In case of Rac, the asymptotic scaling law Rac ∼ E −4/3 explains 
the trend in Rac, especially at low E, while Rac monotonically decreases with radius ratio. Thinner shells (high χ) 

Figure 13.  Comparison with asymptotic theory of Dormy et al. (2004) for Rac. Symbols show numerical results. Solid line 
for χ = 0.35 shows the curve obtained when using values for corrections provided in Dormy et al. (2004), while dashed blue 
line shows the same obtained using a least-squares fit for E ≤ 10 −5. Solid lines for other χ values show a least-squares fit for 
E ≤ 10 −5, extended to nonasymptotic values (dotted lines).

Figure 14.  Same as Figure 13 but for ωc.
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first approach the asymptotic scaling law at higher E compared to thicker shells. ωc has a nonmonotonic behavior 
with χ—its magnitude increases with χ, reaches a plateau and then decreases again for thin shells.

The boundary layer thicknesses at inner and outer boundaries are determined independently using horizontally 
averaged profiles of dissipation as well as horizontal (or nonradial) velocity. These yield scaling laws similar to a 
classical Ekman layer at the outer boundary, δo ∼ E 1/2 and that of an equatorial Ekman layer at the inner bound-
ary, δi ∼ E 2/5 (Marcotte et al., 2016; Stewartson, 1966). An analysis of azimuthally averaged horizontal velocity 
profiles at different latitudes further confirms that the inner boundary layer thickness scaling comes from the 
equatorial Ekman layer singularity of 𝐴𝐴 

(

𝐸𝐸
2∕5

)

 . The convective modes are quasi-geostrophic, attached to the TC 
and extend to a distance from the inner boundary given approximately by 5E 2/9. These modes are spiral in nature, 
as have been noted in past studies (Dormy et al., 2004; Takehiro, 2008; Zhang, 1992). We quantify their spiral 
nature using an approximation of an Archimedean spiral and show that the modes become less curvilinear as the 
radius ratio increases. A comparison of our numerical solutions to the asymptotic theory of Dormy et al. (2004) 
shows that the theory works really well across a wide range of Ekman numbers as well as radius ratios.

Our expansive data set of critical quantities spanning several decades in Ekman number and extending from 
thinnest to thickest shell thicknesses allows interpolation of our results to most commonly used simulation param-
eters. It also enables extrapolation to planetary regimes. For χ = 0.35, we can use our extreme computations till 
E = 10 −9 to obtain critical parameters at an Earth-like E ∼ 10 −15. Extrapolating using data-points at E ≤ 10 −7, we 
obtain 𝐴𝐴 𝐴𝐴𝐴𝐴

𝐸𝐸

𝑐𝑐 ≈ 8 × 1019 , making Ra/Rac ∼ 10 3 for the Earth (Christensen & Aubert, 2006; Jones, 2007). Further, 
we obtain, 𝐴𝐴 𝐴𝐴

𝐸𝐸

𝑐𝑐 ≈ 28770 , consistent with previous estimates (Jones et al., 2000), implying convective columns 
only about 260-m wide. Lastly, 𝐴𝐴 𝐴𝐴

𝐸𝐸

𝑐𝑐 ≈ 4 × 10−6 which corresponds to a drift periodicity of about 700 years.

χ 𝐴𝐴 𝑐𝑐  𝐴𝐴 1  𝐴𝐴 ̃  𝐴𝐴 𝐴𝐴
𝑔𝑔𝑔𝑔

𝑐𝑐   𝐴𝐴 𝐴𝐴
𝑔𝑔𝑔𝑔

1
  𝐴𝐴 𝐴𝐴𝐴

𝑔𝑔𝑔𝑔  𝐴𝐴 (𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕)
𝑐𝑐
 

0.50 0.646 13.429 −2.740 0.629 −0.379 −0.409 −0.648

0.74 2.054 35.894 −6.185 1.267 −0.114 −1.394 −1.088

0.35 0.298 6.899 −1.023 0.361 −0.773 −0.042 0.190

0.35 0.285933 4.16053 0.27902 0.743835 0.56878 −0.72723 −2.2637

Note. The last row lists the values provided in Dormy et al. (2004) for χ = 0.35 for differential heating.

Table 4 
Values of Parameters Used in Higher Order Asymptotic Corrections of Dormy et al. (2004), Obtained Using Least-Squares 
Fit to Numerical Solutions

Figure 15.  Comparison of the Airy function solution of Dormy et al. (2004) to the numerical solutions obtained in this study 
for χ = 0.35, Pr = 1. The horizontal axis shows the variable x = (s − ri)/E 2/9 from Equation 31 and the vertical axis shows the 
magnitude of normalized cylindrical radial velocity |us|, averaged in azimuth, at the equator. Darker colors show lower Ekman 
numbers.

 23335084, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002606 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

BARIK ET AL.

10.1029/2022EA002606

15 of 19

Inhomogenous thermal boundary conditions can have an effect on rotating convection in thin shells (Hori 
et al., 2010; Terra-Nova et al., 2023; Yan & Stanley, 2021). This effect, near onset, depends on the relative scales 
of the free convection and the thermal boundary anomaly. Novel phenomena such as resonance and locking 
can occur when these two scales are comparable (Davies et al., 2009; Zhang & Gubbins, 1993). Due to a steep 
increase in mc with radius ratio, convective scales become very small in thin shells. Thus, a clear scale separation 
occurs between the convective length scales and the thermal boundary anomalies, which are usually large scale, 
implying locking and resonance might be unlikely to occur in thin shell geometries.

The present study has focused on one set of mechanical and thermal boundary conditions: no-slip and fixed 
temperatures as well as on a single Prandtl number of unity. Prandtl number dependence of convection is an 
interesting problem in its own right (Zhang, 1992) and is beyond the scope of the current study. Given the broad 
capabilities of the eigenvalue code Kore, this study leaves open room for future explorations of the influence of 
Pr, different boundary conditions, heating modes, compositional convection, the influence of magnetic fields, all 
of which can help us understand flows in planetary cores and atmospheres, subsurface oceans, and even stellar 
convection zones.

Figure 16.  Interpolation from our data set to estimate critical values at E = 3 × 10 −6 and χ = 0.81. The horizontal axes show 
E and the vertical axes show (a) Rac and (b) mc. Dashed orange lines show a straight line fit to the data (blue dots) at the 
nearest χ = 0.80 on a log scale. Cyan triangles mark the values computed from Kore.

E χ mc 𝐴𝐴 𝐴𝐴
∗
𝑐𝑐 𝐴𝐴 𝐴𝐴

∗∗
𝑐𝑐   Rac 𝐴𝐴 𝐴𝐴𝐴𝐴

∗
𝑐𝑐  % error mc % error Rac

3 × 10 −5 0.50 20 20 18 2.46 × 10 6 2.76 × 10 6 0.00 12.29

3 × 10 −6 0.81 182 173 170 3.07 × 10 7 3.33 × 10 7 4.95 8.50

3 × 10 −7 0.25 28 28 28 8.47 × 10 8 8.14 × 10 8 0.00 3.91

Note. Interpolated values are denoted by 𝐴𝐴
∗ while quantities without a 𝐴𝐴

∗ denote values computed with Kore. 𝐴𝐴 𝐴𝐴
∗
𝑐𝑐 shows 

predicted values through interpolation in E for the nearest χ. 𝐴𝐴 𝐴𝐴
∗∗
𝑐𝑐  denotes mc values obtained from Equation 25. The last two 

columns show percentage errors in mc and Rac values obtained through interpolation.

Table 5 
Comparison of Predictions Against Computed Values
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Appendix A:  Spectral Expression for Viscous Dissipation
We would need the radial and consoidal functions to define the expressions for kinetic energy and viscous 
dissipation

��(�) = �(� + 1)��(�),

��(�) =  ′
�� + 1

�
��

� (A1)

Using the above and the toroidal potential coefficients 𝐴𝐴 (𝑙𝑙𝑙𝑙) , the viscous dissipation can be written as

�(�) = � ∫ ∇̂�′ ∶ ∇̂�′��

= �
�max
∑

�=�

4�
2� + 1

[

3|�′
��|

2 + �(� + 1)|� ′
�� − ���|

2 + |�� + � ′
�� − ��|

2
]

+�(� − 1)(� + 1)(� + 2)
[

|��|
2 + |��|2

]

� (A2)

Here, : denotes the tensor double dot product and

∇̂𝐮𝐮′ ∶ ∇̂𝐮𝐮′ =
1

2

[

∇𝐮𝐮′ +
(

∇𝐮𝐮′
)𝑇𝑇
]

� (A3)

Data Availability Statement
The eigenvalue code Kore is open source and available at https://bitbucket.org/repepo/kore/. Postprocessing was 
done using the spherical harmonic transform library SHTns (Ishioka, 2018; Schaeffer, 2013). The database and 
scripts accompanying this paper are located in the repository: https://github.com/AnkitBarik/convection_onset_
radratio (Barik, 2022). The repository contains the following:

•	 �A README.md providing further details on the data and scripts below.
•	 �A data_final folder contains:

�-	� Two data set files in .mat format:
�*	� data set_Jun28_2022.mat containing critical parameters for 10 −3 ≤ E ≤ 10 −7 for all radius ratios. The 

date was a way to keep track of version number.
�*	� chi0.35_downto_E1e-9.mat containing critical parameters for χ = 0.35 for E values down to 10 −9 used 

to make Figures 5 and 6.
�*	� data set_chi0.5.mat containing critical parameters for χ = 0.5 for E values including E = 10 −5.5 and 

E = 10 −6.5.
�*	� data set_chi0.74.mat containing critical parameters for χ = 0.74 for E values including E = 10 −5.5 and 

E = 10 −6.5.
�-	� Five folders for each Ekman number studied. Within each of these there are 31 subfolders for each radius 

ratio from 0.05 to 0.95 in steps of 0.03 χ increments.
�-	� Within each subfolder there are files containing radial profiles of kinetic energy, viscous dissipation, 

RMS temperature as well as z-averaged kinetic energy with cylindrical radius.
�-	� Python scripts to analyze these profiles and produce Figures 8,9,11, and 12 and obtain scaling laws 27 

and those in Table 3.
•	 �A Jupyter Notebook that reads in data from the .mat files and produces Figures 3–6,13,14, and 16 as well as 

Tables 2 and 5. In doing so, the Notebook also provides a function that takes in desired values of E and χ and 
uses the present database to compute interpolated values of mc and Rac at those E and χ values. The repository 
also contains a binder link to directly launch the Jupyter Notebook.

All data analyses have been carried out using open source libraries NumPy (Harris et  al.,  2020) and SciPy 
(Virtanen et al., 2020). 2D plots have been generated using matplotlib (Caswell et al., 2022; Hunter, 2007). 3D 
plot has been generated using Paraview (https://www.paraview.org/; Ahrens et al., 2005; Ayachit et al., 2012).

 23335084, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002606 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://bitbucket.org/repepo/kore/
https://github.com/AnkitBarik/convection_onset_radratio
https://github.com/AnkitBarik/convection_onset_radratio
https://www.paraview.org/


Earth and Space Science

BARIK ET AL.

10.1029/2022EA002606

17 of 19

References
Ahrens, J., Geveci, B., & Law, C. (2005). ParaView: An end-user tool for large-data visualization. In C. D. Hansen, & C. R. Johnson (Eds.), 

Visualization handbook (pp. 717–731). Burlington: Butterworth-Heinemann. https://doi.org/10.1016/b978-012387582-2/50038-1
Al-Shamali, F. M., Heimpel, M. H., & Aurnou, J. M. (2004). Varying the spherical shell geometry in rotating thermal convection. Geophysical & 

Astrophysical Fluid Dynamics, 98(2), 153–169. https://doi.org/10.1080/03091920410001659281
Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., & Koster, J. (2001). A fully asynchronous multifrontal solver using distributed dynamic scheduling. 

SIAM Journal on Matrix Analysis and Applications, 23(1), 15–41. https://doi.org/10.1137/s0895479899358194
Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y., & Pralet, S. (2006). Hybrid scheduling for the parallel solution of linear systems. Parallel 

Computing, 32(2), 136–156. https://doi.org/10.1016/j.parco.2005.07.004
Amit, H., Choblet, G., Tobie, G., Terra-Nova, F., Čadek, O., & Bouffard, M. (2020). Cooling patterns in rotating thin spherical shells—Application 

to Titan’s subsurface ocean. Icarus, 338, 113509. https://doi.org/10.1016/j.icarus.2019.113509
Ardes, M., Busse, F. H., & Wicht, J. (1997). Thermal convection in rotating spherical shells. Physics of the Earth and Planetary Interiors, 99(1), 

55–67. https://doi.org/10.1016/S0031-9201(96)03200-1
Aubert, J., Gastine, T., & Fournier, A. (2017). Spherical convective dynamos in the rapidly rotating asymptotic regime. Journal of Fluid Mechan-

ics, 813, 558–593. https://doi.org/10.1017/jfm.2016.789
Aurnou, J., Heimpel, M., Allen, L., King, E., & Wicht, J. (2008). Convective heat transfer and the pattern of thermal emission on the gas giants. 

Geophysical Journal International, 173(3), 793–801. https://doi.org/10.1111/j.1365-246X.2008.03764.x
Aurnou, J., Heimpel, M., & Wicht, J. (2007). The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus, 190(1), 

110–126. https://doi.org/10.1016/j.icarus.2007.02.024
Ayachit, U., Geveci, B., Moreland, K., Patchett, J., & Ahrens, J. (2012). The ParaView visualization application. In E. W. Bethel, H. Childs, & C. 

D. Hansen (Eds.), High performance visualization—Enabling extreme-scale scientific insight. CRC Press. https://doi.org/10.1201/b12985-23
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., et al. (2021). PETSc web page. Retrieved from https://petsc.org/
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., et al. (2019). PETSc users manual (Tech. Rep. No. ANL-95/11—

Revision 3.11). Argonne National Laboratory.
Balay, S., Gropp, W. D., McInnes, L. C., & Smith, B. F. (1997). Efficient management of parallelism in object oriented numerical software librar-

ies. In E. Arge, A. M. Bruaset, & H. P. Langtangen (Eds.), Modern software tools in scientific computing (pp. 163–202). Birkhäuser Press. 
https://doi.org/10.1007/978-1-4612-1986-6_8

Barik, A. (2022). AnkitBarik/convection_onset_radratio: Convection_onset_data_v1.0.1 [Dataset]. Zenodo. https://doi.org/10.5281/
zenodo.7359204

Busse, F. H. (1970). Thermal instabilities in rapidly rotating systems. Journal of Fluid Mechanics, 44(3), 441–460. https://doi.org/10.1017/
S0022112070001921

Busse, F. H. (1975). A model of the geodynamo. Geophysical Journal International, 42(2), 437–459. https://doi.org/10.1111/j.1365-246X.1975.
tb05871.x

Busse, F. H. (1986). Asymptotic theory of convection in a rotating, cylindrical annulus. Journal of Fluid Mechanics, 173, 545–556. https://doi.
org/10.1017/S002211208600126X

Busse, F. H. (1994). Convection driven zonal flows and vortices in the major planets. Chaos, 4(2), 123–134. https://doi.org/10.1063/1.165999
Busse, F. H. (2002). Convective flows in rapidly rotating spheres and their dynamo action. Physics of Fluids, 14(4), 1301–1314. https://doi.

org/10.1063/1.1455626
Busse, F. H., & Or, A. C. (1986). Convection in a rotating cylindrical annulus—Thermal Rossby waves. Journal of Fluid Mechanics, 166, 

173–187. https://doi.org/10.1017/S0022112086000095
Calkins, M. A., Julien, K., & Marti, P. (2013). Three-dimensional quasi-geostrophic convection in the rotating cylindrical annulus with steeply 

sloping endwalls. Journal of Fluid Mechanics, 732, 214–244. https://doi.org/10.1017/jfm.2013.309
Calkins, M. A., Long, L., Nieves, D., Julien, K., & Tobias, S. M. (2016). Convection-driven kinematic dynamos at low Rossby and magnetic 

Prandtl numbers. Physical Review Fluids, 1(8), 083701. https://doi.org/10.1103/PhysRevFluids.1.083701
Caswell, T. A., Lee, A., Droettboom, M., de Andrade, E. S., Hoffmann, T., Klymak, J., et al. (2022). matplotlib/matplotlib: Rel: V3.6.2 [software]. 

Zenodo. https://doi.org/10.5281/zenodo.7275322
Chandrasekhar, S. (1961). Hydrodynamic and hydromagnetic stability. Dover Publications.
Christensen, U. R., & Aubert, J. (2006). Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary 

magnetic fields. Geophysical Journal International, 166(1), 97–114. https://doi.org/10.1111/j.1365-246X.2006.03009.x
Christensen-Dalsgaard, J., Gough, D. O., & Thompson, M. J. (1991). The depth of the solar convection zone. The Astrophysical Journal, 378, 

413. https://doi.org/10.1086/170441
Davies, C. J., Gubbins, D., & Jimack, P. K. (2009). Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal 

boundary condition. Journal of Fluid Mechanics, 641, 335–358. https://doi.org/10.1017/S0022112009991583
Dormy, E., Soward, A. M., Jones, C. A., Jault, D., & Cardin, P. (2004). The onset of thermal convection in rotating spherical shells. Journal of 

Fluid Mechanics, 501, 43–70. https://doi.org/10.1017/S0022112003007316
Gastine, T., Wicht, J., & Aubert, J. (2016). Scaling regimes in spherical shell rotating convection. Journal of Fluid Mechanics, 808, 690–732. 

https://doi.org/10.1017/jfm.2016.659
Gastine, T., Wicht, J., & Aurnou, J. M. (2015). Turbulent Rayleigh-Bénard convection in spherical shells. Journal of Fluid Mechanics, 778, 

721–764. https://doi.org/10.1017/jfm.2015.401
Gillet, N., & Jones, C. A. (2006). The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder. Journal of 

Fluid Mechanics, 554, 343–369. https://doi.org/10.1017/S0022112006009219
Gilman, P. A. (1975). Linear simulations of Boussinesq convection in a deep rotating spherical shell. Journal of the Atmospheric Sciences, 32(7), 

1331–1352. https://doi.org/10.1175/1520-0469(1975)032<1331:lsobci>2.0.co;2
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., et al. (2020). Array programming with NumPy. 

Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
Heimpel, M., & Aurnou, J. (2007). Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on 

Jupiter and Saturn. Icarus, 187(2), 540–557. https://doi.org/10.1016/j.icarus.2006.10.023
Heimpel, M., Yadav, R. K., Featherstone, N. A., & Aurnou, J. M. (2022). Polar and mid-latitude vortices and zonal flows on Jupiter and Saturn. 

Icarus, 379, 114942. https://doi.org/10.1016/j.icarus.2022.114942
Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transac-

tions on Mathematical Software, 31(3), 351–362. https://doi.org/10.1145/1089014.1089019

Acknowledgments
We thank the anonymous reviewers for 
their helpful comments, which greatly 
improved the quality of the manuscript. 
This research project was conducted 
using computational resources from the 
Maryland Advanced Research Computing 
Center (MARCC) and the Hopkins 
High Performance Computing Center 
(HHPCC) using their computing clusters 
BlueCrab and Rockfish, respectively. ST 
would like to thank Veronique Dehant for 
her encouragement and support, as well 
as the European Research Council (ERC) 
for financial support under the European 
Union's Horizon 2020 research and inno-
vation program (Synergy Grant agreement 
855677 GRACEFUL). MAC gratefully 
acknowledges funding from the National 
Science Foundation (NSF) through Grants 
EAR-1945270 and SPG-1743852. JMA 
thanks the NSF Geophysics program for 
support via EAR award #2143939.

 23335084, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002606 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/b978-012387582-2/50038-1
https://doi.org/10.1080/03091920410001659281
https://doi.org/10.1137/s0895479899358194
https://doi.org/10.1016/j.parco.2005.07.004
https://doi.org/10.1016/j.icarus.2019.113509
https://doi.org/10.1016/S0031-9201(96)03200-1
https://doi.org/10.1017/jfm.2016.789
https://doi.org/10.1111/j.1365-246X.2008.03764.x
https://doi.org/10.1016/j.icarus.2007.02.024
https://doi.org/10.1201/b12985-23
https://petsc.org/
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.5281/zenodo.7359204
https://doi.org/10.5281/zenodo.7359204
https://doi.org/10.1017/S0022112070001921
https://doi.org/10.1017/S0022112070001921
https://doi.org/10.1111/j.1365-246X.1975.tb05871.x
https://doi.org/10.1111/j.1365-246X.1975.tb05871.x
https://doi.org/10.1017/S002211208600126X
https://doi.org/10.1017/S002211208600126X
https://doi.org/10.1063/1.165999
https://doi.org/10.1063/1.1455626
https://doi.org/10.1063/1.1455626
https://doi.org/10.1017/S0022112086000095
https://doi.org/10.1017/jfm.2013.309
https://doi.org/10.1103/PhysRevFluids.1.083701
https://doi.org/10.5281/zenodo.7275322
https://doi.org/10.1111/j.1365-246X.2006.03009.x
https://doi.org/10.1086/170441
https://doi.org/10.1017/S0022112009991583
https://doi.org/10.1017/S0022112003007316
https://doi.org/10.1017/jfm.2016.659
https://doi.org/10.1017/jfm.2015.401
https://doi.org/10.1017/S0022112006009219
https://doi.org/10.1175/1520-0469(1975)032%3C1331:lsobci%3E2.0.co;2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.icarus.2006.10.023
https://doi.org/10.1016/j.icarus.2022.114942
https://doi.org/10.1145/1089014.1089019


BARIK ET AL. 18 of 19

Earth and Space Science 10.1029/2022EA002606

Hori, K., Wicht, J., & Christensen, U. R. (2010). The effect of thermal boundary conditions on dynamos driven by internal heating. Physics of the 
Earth and Planetary Interiors, 182(1–2), 85–97. https://doi.org/10.1016/j.pepi.2010.06.011

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/
MCSE.2007.55

Ishioka, K. (2018). A new recurrence formula for efficient computation of spherical harmonic transform. Journal of the Meteorological Society 
of Japan, 96(2), 241–249. https://doi.org/10.2151/jmsj.2018-019

Jeffreys, H., & Bland, M. E. M. (1951). The instability of a fluid sphere heated within. Geophysical Supplements to the Monthly Notices of the 
Royal Astronomical Society, 6(3), 148–158. https://doi.org/10.1111/j.1365-246X.1951.tb06273.x

Jones, C. (2007). Thermal and compositional convection in the outer core. In G. Schubert (Ed.), Treatise on geophysics (pp. 131–185). Amster-
dam: Elsevier. https://doi.org/10.1016/b978-044452748-6.00130-9

Jones, C. A., Soward, A. M., & Mussa, A. I. (2000). The onset of thermal convection in a rapidly rotating sphere. Journal of Fluid Mechanics, 
405(1), 157–179. https://doi.org/10.1017/S0022112099007235

Julien, K., Knobloch, E., Rubio, A. M., & Vasil, G. M. (2012). Heat transport in low-Rossby-number Rayleigh-Bénard convection. Physical 
Review Letters, 109(25), 254503. https://doi.org/10.1103/PhysRevLett.109.254503

Julien, K., Rubio, A. M., Grooms, I., & Knobloch, E. (2012). Statistical and physical balances in low Rossby number Rayleigh-Bénard convection. 
Geophysical & Astrophysical Fluid Dynamics, 106(4–5), 392–428. https://doi.org/10.1080/03091929.2012.696109

Kaspi, Y., Galanti, E., Showman, A. P., Stevenson, D. J., Guillot, T., Iess, L., & Bolton, S. J. (2020). Comparison of the deep atmospheric dynam-
ics of Jupiter and Saturn in light of the Juno and Cassini gravity measurements. Space Science Reviews, 216(5), 84. https://doi.org/10.1007/
s11214-020-00705-7

Labrosse, S., Hernlund, J. W., & Coltice, N. (2007). A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature, 450(7171), 
866–869. https://doi.org/10.1038/nature06355

Marcotte, F., Dormy, E., & Soward, A. (2016). On the equatorial Ekman layer. Journal of Fluid Mechanics, 803, 395–435. https://doi.org/10.1017/
jfm.2016.493

Oberbeck, A. (1879). Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. 
Annalen der Physik, 243(6), 271–292. https://doi.org/10.1002/andp.18792430606

Olson, P. (2015). Core dynamics: An introduction and overview. In G. Schubert (Ed.), Treatise on geophysics (2nd ed., pp. 1–25). Oxford: Else-
vier. https://doi.org/10.1016/b978-0-444-53802-4.00137-8

Olver, S., & Townsend, A. (2013). A fast and well-conditioned spectral method. SIAM Review, 55(3), 462–489. https://doi.org/10.1137/120865458
Pekeris, C. L. (1935). Thermal convection in the interior of the Earth. Geophysical Supplements to the Monthly Notices of the Royal Astronomical 

Society, 3(8), 343–367. https://doi.org/10.1111/j.1365-246X.1935.tb01742.x
Pino, D., Mercader, I., & Net, M. (2000). Thermal and inertial modes of convection in a rapidly rotating annulus. Physical Review E, 61(2), 

1507–1517. https://doi.org/10.1103/PhysRevE.61.1507
Pino, D., Net, M., Sánchez, J., & Mercader, I. (2001). Thermal Rossby waves in a rotating annulus. Their stability. Physical Review E, 63(5), 

056312. https://doi.org/10.1103/PhysRevE.63.056312
Proudman, I. (1956). The almost-rigid rotation of viscous fluid between concentric spheres. Journal of Fluid Mechanics, 1(5), 505–516. https://

doi.org/10.1017/S0022112056000329
Rekier, J., Trinh, A., Triana, S. A., & Dehant, V. (2019). Internal energy dissipation in Enceladus’s subsurface ocean from tides and libration and 

the role of inertial waves. Journal of Geophysical Research: Planets, 124, 2198–2212. https://doi.org/10.1029/2019JE005988
Roberts, P. H. (1968). On the thermal instability of a rotating-fluid sphere containing heat sources. Philosophical Transactions of the Royal Soci-

ety of London, Series A, 263(1136), 93–117. https://doi.org/10.1098/rsta.1968.0007
Roman, J. E., Campos, C., Romero, E., & Tomas, A. (2019). SLEPc users manual (Tech. Rep. No. DSIC-II/24/02-Revision 3.12). In D. Sistemes 

(Ed.), Informàtics I Computació. Universitat Politècnica de València.
Schaeffer, N. (2013). Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochemistry, Geophysics, 

Geosystems, 14, 751–758. https://doi.org/10.1002/ggge.20071
Soderlund, K. M. (2019). Ocean dynamics of outer solar system satellites. Geophysical Research Letters, 46, 8700–8710. https://doi.

org/10.1029/2018GL081880
Soderlund, K. M., & Stanley, S. (2020). The underexplored Frontier of ice giant dynamos. Philosophical Transactions of the Royal Society of 

London, Series A, 378(2187), 20190479. https://doi.org/10.1098/rsta.2019.0479
Soward, A. M. (1977). On the finite amplitude thermal instability of a rapidly rotating fluid sphere. Geophysical & Astrophysical Fluid Dynamics, 

9(1), 19–74. https://doi.org/10.1080/03091927708242315
Stewartson, K. (1966). On almost rigid rotations. Part 2. Journal of Fluid Mechanics, 26(1), 131–144. https://doi.org/10.1017/S0022112066001137
Stixrude, L., Scipioni, R., & Desjarlais, M. P. (2020). A silicate dynamo in the early Earth. Nature Communications, 11(1), 935. https://doi.

org/10.1038/s41467-020-14773-4
Takehiro, S.-I. (2008). Physical interpretation of spiralling-columnar convection in a rapidly rotating annulus with radial propagation properties 

of Rossby waves. Journal of Fluid Mechanics, 614, 67–86. https://doi.org/10.1017/S0022112008003194
Terra-Nova, F., Amit, H., Choblet, G., Tobie, G., Bouffard, M., & Čadek, O. (2023). The influence of heterogeneous seafloor heat flux on the 

cooling patterns of Ganymede’s and Titan’s subsurface oceans. Icarus, 389, 115232. https://doi.org/10.1016/j.icarus.2022.115232
Triana, S. A., Trinh, A., Rekier, J., Zhu, P., & Dehant, V. (2021). The viscous and ohmic damping of the Earth’s free core nutation. Journal of 

Geophysical Research: Solid Earth, 126, e21042. https://doi.org/10.1029/2020JB021042
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental algorithms for 

scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
Wicht, J. (2002). Inner-core conductivity in numerical dynamo simulations. Physics of the Earth and Planetary Interiors, 132(4), 281–302. 

https://doi.org/10.1016/s0031-9201(02)00078-x
Yan, C., & Stanley, S. (2021). Recipe for a Saturn-like dynamo. AGU Advances, 2, e00318. https://doi.org/10.1029/2020AV000318
Yano, J.-I. (1992). Asymptotic theory of thermal convection in rapidly rotating systems. Journal of Fluid Mechanics, 243, 103–131. https://doi.

org/10.1017/S0022112092002659
Zhang, K. (1991). Convection in a rapidly rotating spherical shell at infinite Prandtl number: Steadily drifting rolls. Physics of the Earth and 

Planetary Interiors, 68(1–2), 156–169. https://doi.org/10.1016/0031-9201(91)90015-A
Zhang, K. (1992). Spiralling columnar convection in rapidly rotating spherical fluid shells. Journal of Fluid Mechanics, 236, 535–556. https://

doi.org/10.1017/S0022112092001526

 23335084, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002606 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.pepi.2010.06.011
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.2151/jmsj.2018-019
https://doi.org/10.1111/j.1365-246X.1951.tb06273.x
https://doi.org/10.1016/b978-044452748-6.00130-9
https://doi.org/10.1017/S0022112099007235
https://doi.org/10.1103/PhysRevLett.109.254503
https://doi.org/10.1080/03091929.2012.696109
https://doi.org/10.1007/s11214-020-00705-7
https://doi.org/10.1007/s11214-020-00705-7
https://doi.org/10.1038/nature06355
https://doi.org/10.1017/jfm.2016.493
https://doi.org/10.1017/jfm.2016.493
https://doi.org/10.1002/andp.18792430606
https://doi.org/10.1016/b978-0-444-53802-4.00137-8
https://doi.org/10.1137/120865458
https://doi.org/10.1111/j.1365-246X.1935.tb01742.x
https://doi.org/10.1103/PhysRevE.61.1507
https://doi.org/10.1103/PhysRevE.63.056312
https://doi.org/10.1017/S0022112056000329
https://doi.org/10.1017/S0022112056000329
https://doi.org/10.1029/2019JE005988
https://doi.org/10.1098/rsta.1968.0007
https://doi.org/10.1002/ggge.20071
https://doi.org/10.1029/2018GL081880
https://doi.org/10.1029/2018GL081880
https://doi.org/10.1098/rsta.2019.0479
https://doi.org/10.1080/03091927708242315
https://doi.org/10.1017/S0022112066001137
https://doi.org/10.1038/s41467-020-14773-4
https://doi.org/10.1038/s41467-020-14773-4
https://doi.org/10.1017/S0022112008003194
https://doi.org/10.1016/j.icarus.2022.115232
https://doi.org/10.1029/2020JB021042
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/s0031-9201(02)00078-x
https://doi.org/10.1029/2020AV000318
https://doi.org/10.1017/S0022112092002659
https://doi.org/10.1017/S0022112092002659
https://doi.org/10.1016/0031-9201(91)90015-A
https://doi.org/10.1017/S0022112092001526
https://doi.org/10.1017/S0022112092001526


BARIK ET AL. 19 of 19

Earth and Space Science 10.1029/2022EA002606

Zhang, K., & Gubbins, D. (1993). Convection in a rotating spherical fluid shell with an inhomogeneous temperature boundary condition at 
infinite Prandtl number. Journal of Fluid Mechanics, 250, 209–232. https://doi.org/10.1017/S0022112093001430

Zhang, K., & Jones, C. A. (1993). The influence of Ekman boundary layers on rotating convection. Geophysical & Astrophysical Fluid Dynamics, 
71(1–4), 145–162. https://doi.org/10.1080/03091929308203600

Zhang, K. K., & Busse, F. H. (1987). On the onset of convection in rotating spherical shells. Geophysical & Astrophysical Fluid Dynamics, 39(3), 
119–147. https://doi.org/10.1080/03091928708208809

 23335084, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002606 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1017/S0022112093001430
https://doi.org/10.1080/03091929308203600
https://doi.org/10.1080/03091928708208809

	Onset of Convection in Rotating Spherical Shells: Variations With Radius Ratio
	Abstract
	Plain Language Summary
	1. Introduction
	2. Governing Equations
	3. Numerical Method
	3.1. Example Case

	4. Results
	4.1. Variation in mc
	4.2. Variation of Rac
	4.3. Variation of ωc
	4.4. Mode Morphology
	4.4.1. Boundary Layers
	4.4.2. Radial Extent of Modes
	4.4.3. Spiral Nature of Modes


	5. Comparison With Asymptotic Theory
	6. Using This Data Set
	7. Summary and Discussion
	Appendix A: Spectral Expression for Viscous Dissipation
	Data Availability Statement
	References


